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Abstract. This paper deals with visibility problems in Euclidean
spaces where the set of obstacles Y is an infinite discrete point set.
We prove five independent results.

Consider the following problem. Given ε > 0, imagine a forest
whose trees have radius ε and their locations are given by the set
Y . Suppose that a light source is at infinity, and that there are
no arbitrarily large clearings in the forest. Then, are there always
dark points (namely, points that do not see infinity)? We answer
the above question positively. We also examine other visibility
problems. In particular we show that there exists a relatively dense
subset Y of Zd such that every point in Rd has a ray to infinity
with positive distance from Y .

In addition, we derive a number of other results clarifying how
the sizes of the sets of obstacles may affect the sets of points that
are visible from infinity. We also present a geometric Ramsey type
result concerning finding patterns in uniformly separated subsets
of the plane, whose growth is faster than linear.

1. Introduction

We use the following standard notations for a fixed integer d ≥ 2.

For x ∈ Rd, we write ‖x‖ to denote the Euclidean norm of x. Denote
by Sd−1 = {x ∈ Rd | ‖x‖ = 1} the unit sphere centered at the origin 0.
For two non-empty subsets A,B ⊆ Rd, define

dist(A,B) = inf{‖a− b‖ : a ∈ A, b ∈ B}. (1.1)

Given x ∈ Rd and v ∈ Sd−1, by the ray from x in direction v we mean
the set

Lx,v = {x+ tv | t ∈ [0,∞)} ⊆ Rd.
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Definition 1.1. For a non-empty subset Y ⊆ Rd, a direction v ∈ Sd−1
and ε > 0, define the following subsets of Rd:

vis(Y, v)
def
= {x ∈ Rd | dist(Lx,v, Y \{x}) > 0}, (1.2a)

vis(Y )
def
= {x ∈ Rd | x ∈ vis(Y, v) for some v ∈ Sd−1}, (1.2b)

vis(Y, v, ε)
def
= {x ∈ Rd | dist(Lx,v, Y \{x}) ≥ ε}, (1.2c)

vis(Y ; ε)
def
= {x ∈ Rd | x ∈ vis(Y, v, ε) for some v ∈ Sd−1}. (1.2d)

If there is no ambiguity regarding the choice of Y ⊆ Rd, then

• Points x ∈ vis(Y, v) are called visible from direction v.
• Points x ∈ vis(Y ) are called visible; x ∈ Rd\vis(Y ) are called

hidden.
• Points x ∈ vis(Y, v, ε) are called ε-visible from direction v.
• Points x ∈ vis(Y ; ε) are called ε-visible; x ∈ Rd \ vis(Y ; ε) are

called ε-hidden.

We add the specification ”for Y ” at the end of the above word defini-
tions if we want to indicate the dependence of these sets on Y .

For x ∈ Rd and r > 0, denote by B(x, r) = {y ∈ Rd | ‖y − x‖ < r}
the open ball of radius r centered at x. A set Y ⊆ Rd is called discrete
if the intersection of Y with every ball B(x, r) is finite.

By the growth rate of a discrete subset Y ⊆ Rd we mean the integer
valued function defined by the formula

GY (r) = #
(
{y ∈ Y | ‖y‖ < r}

)
= #

(
Y ∩B(0, r)

)
(for r ≥ 0).

(Here and henceforth #S stands for the cardinality of a set S).

A set Y ⊆ Rd is called relatively dense if there exists an r > 0 so that
Y intersects every ball of radius r. Y is uniformly separated if there
exists a δ > 0 such that for every y1, y2 ∈ Y we have dist(y1, y2) ≥
δ. We say Y is r-dense, or δ-separated, when we like to specify the
constants r and δ. Note that if Y ⊆ Rd is a uniformly separated set

then lim sup
r→∞

∣∣∣GY (r)
rd

∣∣∣ <∞, and if Y ⊆ Rd is discrete and relatively dense

then lim sup
r→∞

∣∣∣ rd

GY (r)

∣∣∣ <∞.

One of the objectives in this paper is to investigate how the growth
rate of the set Y may be related to certain properties of the four sets
defined in (1.2). Note that Y1 ⊆ Y2 implies the inequality GY1(r) ≤
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GY2(r) (for all r > 0) and the inclusions

vis(Y2, v) ⊆ vis(Y1, v), vis(Y2) ⊆ vis(Y1), (1.3)

vis(Y2; ε) ⊆ vis(Y1; ε), vis(Y2, v, ε) ⊆ vis(Y1, v, ε). (1.4)

In particular, we establish the following results for discrete subsets
Y ⊆ Rd:

1. If Y ⊆ R2 is relatively dense then for all ε > 0 we have
vis(Y ; ε) 6= R2 (See Theorem 1.2).

2. On the other hand, there exists a relatively dense set Y ⊆
Rd (d ≥ 2) such that vis(Y ) = Rd (See Theorem 1.5).

3. If Y ⊆ Rd is discrete with GY (t) < td−1

log1+ε t
, for some ε > 0 and

all large enough t, then vis(Y ) = Rd (See Theorem 1.4).
4. On the other hand, we exhibit an uniformly separated set Y ⊆ R2

such that lim
t→∞

GY (t) log t
t

= 1 and vis(Y )= ∅ (See Theorem 1.3).

The visibility notions from Definition 1.1 relate to the well-known
Pólya’s orchard problem (see [12, 13]): What is the minimal radius of
trees (viewed as disks in R2), that stand at the integer points in a ball
of radius R, for them to completely block the visibility of the origin,
from the boundary of the ball? this problem was solved by Allen in
[2], and some variants of it appear in [8, 9]. One may also consider a
maximal packing of unit balls in a ball of radius R, instead of balls at
integer points, and ask for which R (if any) there exists points that are
not visible from the boundary? The existence of such an R is known
as Mitchell’s dark forest conjecture, see [10]. Mitchell’s conjecture was
proved in [6]. Another related notion is the following, which can be
viewed as a quantified version of a point set for which every point in
Rd is hidden. Y ⊆ Rd is called a dense forest if for every ε > 0 there
is a uniform upper bound T (ε) > 0 on the lengths of the line segments
that are not ε-close to Y . T (ε) is called the visibility function of Y .
Questions regarding the existence of dense forests that are uniformly
separated, or of bounded density, and bounds on the visibility functions
of them, were studied in [1, 3, 4, 14].

Our main results are the following five theorems; Theorems 1.2, 1.3,
1.4, 1.5 and 1.7.

Theorem 1.2. For every R and ε, where R ≥ ε > 0, and for every R-
dense set Y ⊆ R2, there exist some T > 0 with the following property:
for every x0 ∈ R2 there are points x ∈ B(x0, T ) r

⋃
y∈Y B(y, ε) such

that for every v ∈ S1 we have

dist(Y, {x+ tv | t ∈ [0, T ]}) < ε.



4 MICHAEL BOSHERNITZAN AND YAAR SOLOMON

In particular, we have vis(Y ; ε) 6= R2 and the set of ε-hidden points is
itself T -dense.

We remark that by rescaling one may assume that one of the two
parameters R and ε in Theorem 1.2 is fixed. Fixing ε = 1 for example,
would simplify the constants that appear in the proof of Theorem 1.2.
In order to present the explicit dependency of T in R and ε, we let
both of the parameters vary. It would be interesting to find a smaller
T , in terms of R/ε, that satisfies Theorem 1.2.

Theorems 1.3 and 1.4 address the connection between the growth
rate of a discrete set Y and properties of the set vis(Y ).

Theorem 1.3. There exists a uniformly separated set Y ⊆ R2 such
that vis(Y ) = ∅ and

lim
r→∞

GY (r) log r
r

= 1.

(In particular, the growth rate of such Y is sublinear, lim
r→∞

GY (r)
r

= 0,

and all points in R2 are hidden for Y ).

Theorem 1.4. Let Y ⊆ Rd be a discrete set. Then the implications
(1)⇒(2)⇒(3) take place, where

(1) GY (r) < rd−1

log1+ε r
, for some ε > 0 and all large r.

(2)
∑

y∈Y \{0}

1

‖y‖d−1 <∞.

(3) For every x ∈ Rd, the relation x ∈ vis(Y, v) holds for Lebesgue
almost all v ∈ Sd−1. In particular, vis(Y ) = Rd.

It is easy to see that, for all d ≥ 2, vis(Zd) = Rd\Zd. On the other
hand, the following theorem shows existence of large (density 1 and
relatively dense) subsets Y ⊆ Zd with no hidden points for Y .

Theorem 1.5. Let d ≥ 2. Then, for any ε > 0 and M > 1, there
exists a subset Y ⊆ Zd that has the following properties:

(1) vis(Y ) = Rd (that is, there are no hidden points for Y ).
(2) The growth rate of the complement set Ỹ = Zd\Y is at most

linear; moreover, GỸ (r) = #
(
Ỹ ∩B(0, r)

)
< εr, for all r > 0.

(3) Y is relatively dense in Zd.
(4) The set Ỹ is M-separated.

The set Y in Theorem 1.5 can be viewed as a discrete analogue
of a Nikodym set, a full measure subset N of the unit square in the
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plane such that for every x ∈ N there is a line segment Lx satisfying
N ∩ Lx = {x}, see [7] and [11].

As an application of our approach we also prove a geometric Ramsey-
type theorem, Theorem 1.7 below. Given a discrete set Y we say that
almost every y ∈ Y satisfies (some) property (P ) if

lim
r→∞

#{y ∈ Y ∩B(0, r)| y does not have property (P )}
GY (r)

= 0. (1.5)

Definition 1.6. Let Y ⊆ R2 be discrete set, ε > 0, and Γ a tree1

embedded in the plane with vertices V = {x0, . . . , xm}. Given y0 ∈ Y ,
we say that (Γ, x0) can be ε-realized from y0 in Y if there exists a
function f : V → Y such that f(x0) = y0 and for every edge {xi, xj} of
Γ there is an integer kij ≥ 1 such that

‖(f(xi)− f(xj))− kij(xi − xj)‖ < ε.

Theorem 1.7. Let ε > 0, Y ⊆ R2 a uniformly separated set with
lim
T→∞

T
GY (T )

= 0, Γ = (V,E) a finite tree embedded in R2, and x0 ∈ V .

Then for almost every y0 ∈ Y (in the sense of (1.5)), (Γ, x0) can be
ε-realized from y0 in Y .

Figure 1 illustrates the statement of the theorem.

The structure of the paper. The proofs of the Theorems are given
in the order they are presented in the introduction. The proofs of
Theorems 1.2, 1.3, 1.4 and 1.5 are given in Sections 2, 3, 4 and 5
respectively. The proof of Theorem 1.7 is presented in section 6.

Acknowledgments. The authors are thankful to the anonymous ref-
erees for their insightful comments and corrections.

2. Proof of Theorem 1.2

Theorem 1.2 resembles the following theorem from [6].

Theorem 2.1. For every maximal packing of the plane by unit balls
{Bi} there exists a T > 0 and a point x ∈ B(0, T ) r

⋃
iBi so that

every line segment between x and ∂B(0, T ) intersects an element of
the collection {Bi}.

1An undirected, acyclic, connected graph.
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Y

Figure 1. Different edges may be stretched by different
integer factors.

Note that Theorem 2.1 can be deduced from our Theorem 1.2. Set
Y to be the collection of centers of the balls Bi, then the assertion of
Theorem 1.2, for this Y and with ε = 1, is Theorem 2.1. Our proof
follows the main ideas of the proof of Dumitrescu and Jiang from [6],
although many parts had to be adapted to our settings. This is done
in §2.3.

Our main innovation in Theorem 1.2, compared to Theorem 2.1, is
the ’for all’ quantifier on the parameters R and ε. Whereas in Theorem
2.1 a maximal packing is required in order to block the visibility from
infinity, in our Theorem 1.2 a much more sparse set, of ε-balls that are
R apart, suffices.

Note that since some of the parameters that are used in the proof
are very large, and some are very small, some of our figures are drawn
with wrong proportions.

2.1. Proof outline. For every z ∈ Y let Cz = ∂B(z, ε). We show that
for many elements z ∈ Y there are points on Cz that are not ε-visible.
As in [6] we distinguish between two types of ε-visible points on Cz;
points p ∈ Cz that are ε-visible by a ray that is almost tangent to
Cz at p are called tangentially visible, and other ε-visible points on Cz
are called frontally visible. In Lemma 2.3 we show that every circle2

2Even every arc of every circle.
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of radius ε contains points that are not tangentially visible. Then in
Lemma 2.7 we show that for a large enough T only a fraction of the
circles Cz that are contained in B(x0, T ), for x0 ∈ R2 and z ∈ Y ,
contains points that are frontally visible. These two together imply
that for a large enough T , some portion of the circles Cz in B(x0, T ),
z ∈ Y , contain points that are not ε-visible. In particular, such points
exist in every ball B(x0, T ).

2.2. Terminology. Given a circle C in the plane and σ, α ∈ [0, 2π) we
denote by A(σ;α) the arc of the circle C that corresponds to the central
angle that lies between σ and σ+α. The function a : [0, 2π)→ C maps
an angle α to the point on C that is the intersection of C and the ray
in direction α from the center of C. For two points x, y ∈ R2 we denote
by xy the line segments that connects x and y.

Definition 2.2. Let ε, δ > 0 and let C ⊆ R2 be a circle.

• A point p ∈ C is called δ-tangentially-ε-visible (δ-T -ε-V ) if p is
ε-visible by a ray Lp,v that satisfies:
(i) Lp,v∩C = {p} (Lp,v intersects C only at the tangent point).

(ii) The angle between Lp,v and the tangent to C at p is at
most δ.

• An arc of C is called completely δ-T -ε-V if every point on that
arc is δ-T -ε-V .
• p = a(0) denotes the point where the tangent to C at p is ver-

tical (a(π) also has this property, though here p = a(0)). There
are two directions in which a ray initiated from p is almost tan-
gent to p, and we distinguish between them in the following
way. We say that a ray is pointing downwards (respectively up-
wards) to describe rays that point in these two directions, up to
a small error. We say that p is δ-T -ε-V from below (respectively
δ-T -ε-V from above) if p is δ-T -ε-V by a ray pointing down-
wards (respectively upwards), up to an error angle δ at p from
the tangent to p. We adapt this terminology to other points
q = a(α) on C by rotating the plane so that q = a(0). Note
that this terminology will be used in the proof for points that
are close to a(0), where the rays truly point almost vertically
downwards or almost vertically upwards.
• A point p ∈ C that is ε-visible but not δ-T -ε-V is called δ-

frontally-ε-visible (δ-F -ε-V ). A ball B is called δ-F -ε-V if some
point on its boundary is δ-F -ε-V .
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2.3. Proof of Theorem 1.2. We begin with a lemma that asserts
that for relatively dense sets Y , completely δ-T -ε-V arcs do not exist,
for δ = δ(ε) small enough.

Lemma 2.3. Let Y ⊆ R2 be an R-dense set. Then for every ε, α > 0
there exists δ = δ(ε, R, α) > 0 such that for every x ∈ R2, every arc of

central angle α in C
def
= ∂B(x, ε) is not completely δ-T -ε-V .

Proof. It suffices to prove the statement for α ∈ (0, π/6). Let ε >
0, α ∈ (0, π/6). To simplify notations, we may assume that R is an
integer multiple of ε (replacing R by some number in [R,R+ ε) entail
no loss of generality). Set

N
def
=

2R

ε
, β

def
=

α

4N
and δ

def
=

β

4N
=

α

16N2
. (2.1)

Let x ∈ R2, and C
def
= ∂B(x, ε). Without loss of generality we prove the

lemma for the arc A
def
= A(0;α) (see §2.2). For contradiction, assume

that A is completely δ-T -ε-V .

Divide A into 4N arcs, of equal length, with the points qi
def
= a

(
iα
4N

)
,

for i ∈ {0, . . . , 4N} (a(·) as in §2.2). Each of these sub-arcs has central

angle β, and we denote it by Ai
def
= A(qi; β), for i ∈ {0, . . . , 4N − 1}.

Similarly, divide each Ai into 4N arcs of equal length with the points

pi,j
def
= a

(
iα
4N

+ jβ
4N

)
, for j ∈ {0, . . . , 4N}. Consider the following two

cases:
Case 1: There exists an i ∈ {0, . . . , 4N − 1} such that all the points
pi,1, . . . , pi,4N−1 are δ-T -ε-V from below:
For j ∈ {0, . . . , 4N − 1} let Lj be the ray tangent to C at pi,j that
points downwards, rj a ray that indicates that pi,j is δ-T -ε-V from
below, and L′j the ray pointing downwards that intersects C only at
pi,j and that create an angle δ at pi,j between Lj and L′j. Let L4N be the
ray tangent to pi,4N = pi+1,0 that points downwards. Denote by z the
intersection point of L0 and L4N and let a0 and a4N be two points on
L0 and L4N respectively such that the triangle with vertices a0, a4N , z
is the minimal isosceles triangle that contains a ball B of radius R (see
Figure 2 (a)). Since β < π/6, the legs of that triangle are indeed za0

and za4N , and the base is I
def
= a0a4N .

For every j ∈ {0, . . . , 4N − 1} let bj be the intersection point of rj
and I, and aj the intersection point of Lj and I. Our next goal is to
show that the points {b0, . . . , b4N−1} divide I into segments of lengths
less than ε. This in turn implies that the rays rj divide B in a way
that every ball of radius ε that is centered in B intersects at least
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δ𝑝𝑖,𝑗

R

B(x,ε)

𝐿4𝑁

𝐿0

𝑎4𝑁

𝑎0

𝛽

z ≈ 𝑝𝑖,𝑗

𝛽
4𝑁

𝛿

𝛽
4𝑁

Central angle

𝐿𝑗
′

𝐿𝑗

𝐿𝑗+1

)a))b)(c)

Figure 2

one of the rays rj (see Figure 2 (c)). Since Y is R-dense, there exists
some y ∈ B ∩ Y . This will contradict the assumption that the points
pi,1, . . . , pi,4N−1 are δ-T -ε-V by the rays r1, . . . , r4N−1 and thus conclude
the proof.

Using elementary geometry (see Figure 2 (a)) it is easy to show
that for every j ∈ {0, . . . , 4N − 1} we have dist(pi,j, aj) ≤ 4R

β
. Since

δ = β/4N the slope of the ray Lj+1 is equal to the slope of L′j (see
Figure 2 (b)). This implies that bj lies between aj and aj+1 on I. In
addition we have

dist(aj, aj+1) ≤ 2dist(pi,j, aj) sin

(
β

8N

)
≤ 2

4R

β

β

8N
=
R

N
=
ε

2
,

which implies the assertion.
Case 2: For every i ∈ {0, . . . , 4N − 1} there is a j ∈ {0, . . . , 4N − 1}
such that p′i

def
= pi,j is δ-T -ε-V from above3:

We repeat the argument from case 1 in a larger scale. For simplicity,
we use the same notations. Here we denote by Li, for i ∈ {0, . . . , 4N},
the ray tangent to C at q′i = a

(
iα
4N
− β

4N

)
that points upwards, and by

ri, for i ∈ {0, . . . , 4N − 1}, a ray that indicates that p′i is δ-T -ε-V from
above. Denote by z the intersection point of L0 and L4N and let a0 and
a4N be two points on L0 and L4N respectively such that the triangle

3Note that this is the opposite case to Case 1.
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with vertices a0, a4N , z is the minimal isosceles triangle that contains
a ball B of radius R. Since α < π/6, the legs of that triangle are za0

and za4N , and the base is I
def
= a0a4N .

For i ∈ {0, . . . , 4N − 1} let bi be the intersection point of ri and I,
and ai the intersection point of Li and I. Once again it is easy to verify
that dist(q′i, ai) ≤ 4R

α
, and that bi lies between4 ai and ai+1 on I, for

every i ∈ {0, . . . , 4N − 1}. In addition we have

dist(ai, ai+1) ≤ 2 dist(q′i, ai) sin
( α

8N

)
≤ 2

4R

α

α

8N
=
R

N
=
ε

2
,

which implies the assertion in a similar manner, and hence completes
the proof of Lemma 2.3. �

The proofs of the following two geometric lemmas are straightfor-
ward, and we leave them to the reader.

Lemma 2.4. Let T > µ > 0. Suppose that ai = (xi, yi) ∈ R2, i ∈
{1, 2, 3, 4}, satisfy (see Figure 3)

x1 = x2 = 5T, y1, y2 ∈
[
−µ

2
,
µ

2

]
, y1 ≤ y2, x3 = x4, y4 − y3 ≥ µ, (2.2)

and a3, a4 ∈ B
def
= [−T, T ]2. Let `1 = a1b, `2 = a2c, where b 6= c

and b, c ∈ {a3, a4}. Denote by d1, d2 the intersection point of `1, `2
respectively with ∂B. Then dist(d1, d2) ≥ µ

3
(see Figure 3).

Figure 3

4This follows from the term − β
4N that appears in the definition of the new points

q′i.
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Lemma 2.5. Let ε > δ > 0. For z ∈ R2 if a ball B(z, ε) is δ-F -ε-V by
a ray L then there is a point a ∈ B(z, ε), that lies on the continuation
of L, with dist(a, ∂B(z, ε)) > µ, where

µ
def
=
εδ2

4
. (2.3)

For the proof of the next lemma we rely on the following proposition,
see Lemma 6 in [6].

Proposition 2.6. Let k, c, η > 0 and let I be an interval of length |I|.
Let A ⊆ I be a finite set with at least c |I| points, which are at least η
apart from each other. Set

r
def
=

k

k − 1
, j

def
=

⌈
log 2

cη

log r

⌉
, and Z0 = Z0(k, c, η)

def
= 2ηkj. (2.4)

Then if |I| ≥ Z0 there exists some x ≥ 2η, and a sub-interval J ⊆ I
of length kx such that the subdivision of J into k equal sub-intervals
J1, . . . , Jk satisfies Ji ∩ A 6= ∅ for every i.

Lemma 2.7. Let ε > 0, let Y ⊆ R2 be an R-dense set such that R
is an integer multiple of ε. Let N = 2R

ε
, δ = ε2

27·R2 , C = 1
4R2 , and let

T > 0 be an integer multiple of εδ2 that satisfies

T ≥ ε

2
(4N)j, where j =

⌈
33 + 10 logN

log(4N)− log(4N − 1)

⌉
. (2.5)

Then the number of z ∈ Y ∩ B(0, T ) such that B(z, ε) is δ-F -ε-V is
less than CT 2.

Proof. For contradiction, assume that for at least CT 2 points z ∈ Y ∩
B(0, T ) the balls Bz = B(z, ε) are δ-F -ε-V . Each of these balls has a
point pz on its boundary and a ray Lz, initiated at pz, which indicates
that Bz is δ-F -ε-V . Denote by L the set of the rays Lz, then #L ≥
CT 2.

Set

µ
def
=
εδ2

4
=

ε5

216R4
, and M

def
=

32T

µ
. (2.6)

Note that the assumption on T implies that M is an integer. Con-
sider the larger ball B(0, 5T ) and place M equally spaced5 points
p0, . . . , pM−1 on ∂B(0, 5T ). The tangents to B(0, 5T ) through the
points pj form a regular M -gon that B(0, 5T ) is inscribed in. De-
note by Ij the edge of that M -gon that contains pj. Observe that the

5Note that 32T > 10πT , which is the length of the diameter of B(0, 5T ).
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length of each segment Ij is at most µ. By the pigeonhole principle
there exists some j such that at least

CT 2

M
=
CT 2

32T
µ

=
CµT

32
(2.7)

rays from L intersects Ij. We rotate the whole plane about the origin
so that the segment Ij is vertical, and denote by Lj ⊆ L the subset of
rays of L that intersects Ij. Note that all of these rays intersect the

vertical line segment I
def
= {T} × [−T, T ] of length 2T (see Figure 4).

Let A′ ⊆ I be the set of these intersection points.

Recall that each ray Lz in Lj is initiated from a point pz ∈ ∂Bz, for
some z ∈ Y , such that pz is δ-F -ε-V by Lz. So by our choice of µ in (2.6)
and by Lemma 2.5 there is a point az ∈ Bz with dist(az, ∂Bz) ≥ µ.
This implies that the requirements in (2.2) are satisfied (see Figure
3), and we can apply Lemma 2.4 for any such pair of rays, connecting
points of the form az to Ij (see Figure 4). This in turn implies that the
points of A′ are at least µ/3 apart from each other, and in particular no
two rays of Lj intersect I at the same point. We pick a subset A ⊆ A′

such that any two points in A are at least ε/2 apart. This is done by
ordering the elements of A′ and picking every 3ε

2µ
point in that order

(note that 3ε
2µ
∈ N). Thus, using (2.7), we obtain that

#A

|I|
≥ #A′

3ε
2µ
|I|
≥

CµT
32

3ε
2µ
· 2T

≥ Cµ2

27ε
=

µ2

29εR2

def
= c. (2.8)

We apply Proposition 2.6 with c as in (2.8), k = 4N , and η = ε/2. In
view of (2.6) and (2.8) we obtain

cη = cε/2 =
µ2ε

210εR2
=

ε10

242R10
=⇒ log

2

cη
= 33+10 log

2R

ε
= 33+10 logN.

Therefore the constant j in (2.4) is

j =

⌈
33 + 10 logN

log 4N
4N−1

⌉
=

⌈
33 + 10 logN

log(4N)− log(4N − 1)

⌉
.

Then the constant Z0 in (2.4) is

Z0 = 2ηkj = ε(4N)j.

Thus, by the assumption on T in (2.5), we have |I| = 2T ≥ Z0. Apply-
ing Proposition 2.6 we obtain an x ≥ 2η = ε, and a sub-interval J ⊆ I
of length 4Nx ≥ 4R such that the subdivision of J into 4N equal sub-
intervals J1, . . . , J4N satisfies Ji∩A 6= ∅ for every i ∈ {1, . . . , 4N}. Let
L1, . . . , L4N ∈ Lj be the rays that correspond to those 4N points of
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A. Let Ω be the convex hull of Ij ∪ J , then Ω clearly contains balls of
radius R. Let B ⊆ Ω be the ball of radius R that is tangent to the line
segments that bound Ω from above and below (see Figure 4). Then
B ∩ Y 6= ∅ and every point p ∈ B ∩ Y is within distance at most ε/2
from at least one of the rays L1, . . . , L4N , contradicting our assumption
on the rays in L.

Figure 4

�

Proof of Theorem 1.2. Let ε > 0 and let Y ⊆ R2 be an R-dense set.
By slightly increasing R we may assume that R is an integer multiple
of ε. Pick T > 0 as in Lemma 2.7, and given x0 ∈ R2 we prove that

the ball B
def
= B(0, T ) contains points of the R-dense set Y0

def
= Y − x0,

with the required property.

It is easy to verify that B contains at least 1
2R2T

2 disjoint balls of
radius R, each one contains at least one element of Y0. Denote by
Y ′ = Y0 ∩B, then we have established that #Y ′ ≥ 1

2R2T
2.

Let δ = ε2

27R2 , as in Lemma 2.7. Note that this δ is consistent with

our choice of δ in (2.1), for α = 1
2
< π

6
. So by Lemma 2.3, every ball

B(z, ε), for z ∈ Y ′, is not completely δ-T -ε-V . Applying Lemma 2.7
we obtain that for at most 1

4R2T
2 elements z ∈ Y ′ the ball B(z, ε) is

δ-F -ε-V . That leaves at least 1
4R2T

2 = 1
2R2T

2 − 1
4R2T

2 many elements
z of Y ′ for which the ball B(z, ε) is not completely δ-T -ε-V and not
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δ-F -ε-V . Namely there are at least 1
4R2T

2 points, on the boundaries of
these balls, which are not ε-visible. �

3. Proof of Theorem 1.3

Consider the set

Y
def
= {yk | k ≥ 2} ⊆ C, (3.1a)

where

yk = rke
iφk ∈ C, and

{
rk = k log k

φk = log1/2(log k)
(3.1b)

(with R2 and C being identified).

Theorem 1.3 is derived from the following proposition.

Proposition 3.1. The set Y satisfies vis(Y ) = ∅ and

lim
r→∞

GY (r) log r

r
= 1. (3.2)

Proof. The growth rate (3.2) of Y is easily validated. In order to prove
that vis(Y ) = ∅, we have to show that for any ray Lx,v = {x+ tv | t ∈
[0,∞)} one has:

dist(Lx,v, Y ) = 0 (∀x ∈ R2, ∀v ∈ S1). (3.3)

Fix x ∈ R2 and v ∈ S1. Since the union U =
⋃
k≥3

yk, yk+1 of the

segments yk, yk+1 forms an expanding spiral in R2 (spinning counter-
clockwise), the set

K = K(Lx,v) := {k ≥ 3 | yk, yk+1 ∩ Lx,v 6= ∅} (3.4)

is infinite. We shall prove that in fact

lim
k→∞
k∈K

dist(Lx,v, yk) = 0. (3.5)

This would imply (3.3) and complete the proof of Proposition 3.1.

Observe the following three estimates (see (3.1b)):

φ′k
def
= φk+1 − φk = O

(
1

k · log k · log1/2(log k)

)
, (3.6a)

r′k
def
= rk+1 − rk = O(log k) (3.6b)

|yk+1 − yk| = O(log k). (3.6c)
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The first two, (3.6a) and (3.6b), are straightforward, and the third one
easily follows:

|yk+1 − yk| = |rk+1e
iφk+1 − rkeiφk | ≤ |rk+1e

iφk+1 − rkeiφk+1|
+ rk|eiφk+1 − eiφk | = |r′k|+ rk |eiφ

′
k − 1| = O(log k)

+O(rk · φ′k) = O(log k) +O
(

1

log1/2(log k)

)
= O(log k).

For x ∈ R2, denote by φ′k,x ∈ [0, π] the angle between the vectors
−→xyk = yk − x and −−−→xyk+1 = yk+1 − x.

Note that in view of (3.1b) and (3.6a), we have

φ′k,0 = φk+1 − φk = O
(

1

k · log k · log1/2(log k)

)
(3.7)

where 0 = (0, 0). Denote by Sk,x the area of the triangle 4(x, yk, yk+1),
with vertices x, yk, yk+1. Then

Sk,x = 1
2
|yk − x| · |yk+1 − x| · sinφ′k,x (3.8)

and hence, in view of (3.1b) and (3.7),

Sk,0 = 1
2
|yk| · |yk+1| · sinφ′k,0 (3.9)

= O(k2 · log2 k · φ′k,0) = O
(

k · log k
log1/2(log k)

)
.

Denote by <(z),=(z) ∈ R the real and imaginary parts of z ∈ C.

Since x ∈ C = R2 is fixed, the numbers a = <(x), b = =(x) are also
fixed. Then

Sk,x =
1

2

∣∣∣∣det

(
<(yk)− a <(yk+1 − yk)
=(yk)− b =(yk+1 − yk)

)∣∣∣∣ ≤ ∣∣S(1)
k,x

∣∣+
∣∣S(2)

k,x

∣∣
where S

(1)
k,x = 1

2
det

(
<(yk) <(yk+1 − yk)
=(yk) =(yk+1 − yk)

)
and S

(2)
k,x = det

(
a <(yk+1 − yk)
b =(yk+1 − yk)

)
.

In view of (3.9) and (3.6c), we have
∣∣S(1)

k,x

∣∣ = Sk,0 = O
(

k · log k
log1/2(log k)

)
and

∣∣S(2)
k,x

∣∣ = O(|yk+1 − yk|) = O(log k) (as x is fixed). Thus

Sk,x ≤
∣∣S(1)

k,x

∣∣+
∣∣S(2)

k,x

∣∣ = O
(

k · log k
log1/2(log k)

)
.

Since |yk − x|−1 = O(k−1 log−1 k), it follows from (3.8) that

sinφ′k,x = O
(
|yk − x|−1 |yk+1 − x|−1 · Sk,x

)
= O

(
1

k·log k · log1/2(log k)

)
.

(3.10)

Now assume that k ∈ K. Then the ray Lx,v intersects the segment
[yk, yk+1]. Let ψk,x be the angle between the ray −−→x, yk and the ray Lx,v.
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This angle forms a part of the angle between the vectors −→xyk and −−−→xyk+1,
hence

0 ≤ ψk,x ≤ φ′k,x < π/2 (k ∈ K).

Taking into account the estimate (3.10), we obtain

dist(Lx,v, Y ) ≤ dist(Lx,v, yk) = |yk| sinψk,x ≤ |yk| sinφ′k,x
= (k · log k) ·O

(
1

k · log k · log1/2(log k)

)
= O

(
1

log1/2(log k)

)
(k ∈ K).

This proves (3.3) and completes the proof of Proposition 3.1. �

4. Proof of Theorem 1.4

The proof of Theorem 1.4 is provided only for the case of d = 2. The
general case is handled in a similar way.

The proof of Theorem 1.4, for d = 2, is partitioned into two parts.
The implications (1)⇒(2) and (2)⇒(3) are established by Propositions
4.1 and 4.3, respectively.

Proposition 4.1. Let Y ⊆ R2 be a discrete subset such that GY (r) <
r

log1+ε r
, for some ε > 0 and all large r. Then

∑
y∈Y \{0}

1
‖y‖ <∞.

Proof. For k ≥ 1, denote Yk = {y ∈ Y | ‖y‖ ≤ 2k} and

Zk = Yk+1\Yk =
{
y ∈ Y

∣∣ 2k < ‖y‖ ≤ 2k+1
}
.

Then, for large k, we have∑
y∈Zk

1

‖y‖
≤ |Zk| · 2−k ≤ |Yk+1| · 2−k ≤

2k+1

log1+ε(2k+1)
· 2−k =

O(1)

k1+ε
.

It follows that∑
y∈Y \{0}

1

‖y‖
≤
∑

y∈Y1\{0}

1

‖y‖
+
∑
k≥1

(∑
y∈Zk

1

‖y‖

)
<∞.

�

Lemma 4.2. Let Y ⊆ R2 be a discrete subset such that
∑

y∈Y \{0}

1
‖y‖ <∞

holds. Then, for Lebesgue almost all directions v ∈ S1 ⊆ R2, we have
0 ∈ vis(Y, v). In particular, 0 ∈ vis(Y ).
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Proof. Recall that L0,v = {vt | t ∈ [0,∞)} ⊆ R2. Let Y ′ = Y \{0} and
ε > 0. Set

DY (ε)
def
= {v ∈ S1 | dist(L0,v, Y

′) < ε}

=
⋃
y∈Y ′
{v ∈ S1 |dist(L0,v, y) < ε}.

Then

λ(DY (ε)) ≤
∑
y∈Y ′

λ({v ∈ S1 | dist(L0,v, y) < ε}) (4.1)

where λ stands for the Lebesgue measure on the unit circle S1 ⊆ R2,
λ(S1)= 2π.

Now assume that 0 < ε < min
y∈Y ′
‖y‖. Then one verifies that

λ({v ∈ S1 | dist(L0,v, y) < ε}) = 2 arcsin ε
‖y‖ <

πε
‖y‖ ,

for every y ∈ Y ′ (the inequality 2 arcsin t < πt, for 0 < t < 1, is used).

By substituting the last inequality into (4.1), we derive that λ(DY (ε)) ≤
πε c, where c = c(Y ) =

∑
y∈Y ′

1

‖y‖
<∞.

Next consider the set DY = {v ∈ S1 | dist(L0,v, Y
′) = 0}. Since for

every ε > 0 we have DY ⊆ DY (ε), and since lim
ε→0+

λ(DY (ε)) = 0, we

conclude that λ(DY ) = 0, and hence

λ(S1\DY ) = λ{v ∈ S1 | dist(L0,v, Y
′) > 0} = 2π.

�

Proposition 4.3. Let Y ⊆ R2 be a discrete subset and let x ∈ R2

be an arbitrary point. Assume that
∑

y∈Y\{0}

1
‖y‖ < ∞ holds. Then, for

Lebesgue almost all directions v ∈ S1, we have x ∈ vis(Y, v).

Proof. Let Z = Y − x = {y − x | y ∈ Y }. Observe the implication∑
y∈Y \{0}

1
‖y‖ <∞ =⇒

∑
z∈Z\{0}

1
‖z‖ <∞.

By Lemma 4.2, for Lebesgue almost all directions v ∈ S1, we have
0 ∈ vis(Z, v); hence x ∈ vis(Z + x, v) = vis(Y, v). �
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5. Proof of Theorem 1.5

In Theorem 1.5 we construct a large (density 1 and relatively dense)
subset Y ⊆ Zd with no hidden points for Y .

Proof of Theorem 1.5. For simplicity, the construction is presented only
for dimension d = 2. The same idea works for general d ≥ 2.

Outline of the construction. We start with arbitrary ordering of
the set Z2 in a sequence (zk)k≥1.

Then, we inductively construct an increasing sequence (mk)k≥1 of
positive integers (the details are below, following (5.4)).

Given zk and mk, the vectors vk ∈ Z2 and the sets Yk ⊆ Z2 are
determined as follows:

vk
def
= (mk, 1) ∈ Z2; (5.1)

Yk
def
= {zk + nvk | n ∈ N \ {0}} ⊆ Z2. (5.2)

Finally, we define set Y by setting

Ỹ
def
=
⋃

k≥1
Yk; Y

def
= Z2 \Ỹ . (5.3)

We claim that every point z ∈ R2 is visible for Y , i. e. condition (1)
of Theorem 1.5 is satisfied (regardless of the choice of integers mk).

Indeed, if z /∈ Z2, the claim is obvious (z is visible in either a hori-
zontal or a vertical direction). Otherwise z = zk for some k ≥ 1, and,
since Y ⊆ Z2\Yk, we get

z = zk ∈ vis(Z2\Yk, vk) ⊆ vis(Z2\Yk) ⊆ vis(Y ). (5.4)

Construction of a sequence (mk). We describe an inductive pro-
cedure for selecting integers mk to assure that conditions (2), (3) and
(4) of the theorem are met.

Let m1 > max{M, 4/ε, 2‖z1‖} and proceeds by induction.

Assume that a strictly increasing K terms long sequence of numbers
(mk)

K
k=1 has been already selected, K≥ 1. Then the vectors vk and the

sets Yk are determined by (5.1) and (5.2). One easily verifies that for
each k = 1, . . . , K

lim
m→∞

dist(Yk, {zk+1 + t(m, 1) | t ∈ [1,∞)} =∞. (5.5)

We select mK+1 large enough to satisfy the inequalities

mK+1 > max{2K+1/ε, 2‖zK+1‖ ,mK} (5.6a)
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Figure 5. For each point zk, a line of vision for zk is
created by removing all the integer points on a particular
ray, which is initiated in zk.

and

dist(Yk, YK+1) > M (1 ≤ k ≤ K) (5.6b)

where YK+1 = {zK+1 + n(mK+1, 1) | n ≥ 1} is set in accordance with
(5.2) and (5.1) (note that the inequality (5.6b) can be achieved because
of (5.5)).

This completes the inductive construction of the sequence (mk).

Validation of condition (2). Note that ‖vk‖ = ‖(mk, 1)‖ > mk >
2 ‖zk‖ for all k ≥ 1 (see (5.1) and (5.6a)). It follows that, for all
n, k ∈ N \ {0},

‖nvk + zk‖ ≥ n ‖vk‖ − ‖zk‖ > (n− 1
2
) ‖vk‖ ≥ n

2
‖vk‖ > nmk

2
.

For any k ≥ 1, in view of the definition of Yk (see (5.2)), we obtain

GYk(r) = #{n ≥ 1 | ‖nvk + zk‖ < r} ≤
≤ #{n ≥ 1 | nmk

2
< r} < 2r

mk
< 2rε2−(k+1) = rε2−k,



20 MICHAEL BOSHERNITZAN AND YAAR SOLOMON

and, since Ỹ =
⋃
k Yk (see (5.3)), we conclude that

GỸ (r) ≤
∑
k≥1

GYk(r) < rε
∑
k≥1

2−k = rε,

validating condition (2) of Theorem 1.5.

Validation of conditions (3) and (4). To validate condition (4),
we have to establish the implication (y1, y2 ∈ Ỹ , y1 6= y2) =⇒
dist(y1, y2) ≥M.

Since y1, y2 ∈ Ỹ =
⋃
k Yk, there are k1, k2 ∈ N such that y1 ∈ Yk1 ,

y2 ∈ Yk2 . If k1 = k2, set k = k1; then y1, y2 ∈ Yk and (since y1 6= y2) we
obtain dist(y1, y2) ≥ ‖vk‖ > mk > M . On the other hand, if k1 6= k2,
we may assume that k1 > k2, and then dist(y1, y2) ≥ dist(Yk1 , Yk2) >
M (see (5.6b)). This validates condition (4).

In order to validate condition (3), we show that every ball B of
radius

√
2 contains a point in Y (this claim holds only for d = 2; for

d ≥ 3, the required radius could be taken
√
d). Let B = B(z,

√
2)

where z = (a, b) ∈ R2. Then both points y1 = (bac , bbc) and y2 =
(bac+ 1, bbc) lie in B ∩ Z2. Since ‖y1 − y2‖ = 1 < M , we have yi /∈ Ỹ
for at least one i ∈ {1, 2} (due to the already established condition
(4)). Then yi ∈ Y (see (5.3)), and hence yi ∈ B ∩ Y . Thus B ∩ Y 6= ∅.
The proof of Theorem 1.5 is complete.

�

6. Proof of Theorem 1.7

We begin with the following lemma, which is the key for the proof
of Theorem 1.7.

Lemma 6.1. Let Y ⊆ R2 be a discrete set such that lim
r→∞

r
GY (r)

= 0.

Let a non-zero vector 0 6= v ∈ R2 and an ε > 0 be given. Then:

(A) For almost every z ∈ Y (in the sense of (1.5)), one can find a
point w ∈ Y \ {z} and an integer k ≥ 0 such that

‖(z − w)− kv‖ < ε. (6.1)

(B) Assume in addition that Y is uniformly separated. Then for
every integer M ≥ 1 and for almost every z ∈ Y there exists
w ∈ Y \ {z} and an integer k ≥M such that (6.1) holds.

Proof of (A) in Lemma 6.1. Without loss of generality we may assume
that v = (1, 0).
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Fix r > 1. Divide the interval [−r, r) into N1 = d4r/εe half-closed
intervals Si of equal length d1 = 2r

N1
≤ ε/2. Divide the interval [0, 1)

into N2 = d2/εe half-closed intervals Ij of equal length d2 = 1
N2
≤ ε/2.

For z = (z1, z2) ∈ R2, denote by πj(z) = zj ∈ R, j = 1, 2. For
1 ≤ i ≤ N1 and 1 ≤ j ≤ N2, set

Yi,j(r)
def
= {y ∈ Y ∩B(0, r) | π2(y) ∈ Si and {π1(y)} ∈ Ij} (6.2)

where {π1(y)} ∈ [0, 1) stands for the fractional part of π1(y).

Next we prove the following implication:

z, w ∈ Yi,j(r) =⇒ ‖(z − w)− kv‖ < ε, (6.3)

where k = bπ1(z)c − bπ1(w)c ∈ Z.

Indeed, if z, w ∈ Yi,j(r) for some 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, then

|{π1(z)} − {π1(w)}| < |Ij| = d2 ≤ ε/2 (6.4)

and hence

|(π1(z)− π1(w))− k| < ε/2.

We also have

|π2(z)− π2(w)| < |Si| = d1 ≤ ε/2, (6.5)

and hence

‖(z − w)− kv‖ =
∥∥(π1(z)− π1(w)− k, π2(z)− π2(w)

)∥∥ < √2·ε/2 < ε,

completing the proof of the implication (6.3).

Denote by Y ′ the set of z ∈ Y such that for every w ∈ Y \{z} and
every integer k ≥ 0 the inequality

‖(z − w)− kv‖ ≥ ε (6.6)

holds. By (6.3)

#(Yi,j(r) ∩ Y ′) ≤ 1, for all 1 ≤ i ≤ N1, 1 ≤ j ≤ N2. (6.7)

Since B(0, r) ∩ Y ′ =
⋃
i,j(Yi,j(r) ∩ Y ′), we conclude that

#(B(0, r) ∩ Y ′) ≤ #((i, j)) = N1N2 = d4r/εe · d2/εe .

Therefore lim sup
r→∞

#(B(0,r)∩Y ′)
r

≤ d4/εe·d2/εe. Finally, since lim
r→∞

r
GY (r)

=

0, we derive that lim
r→∞

#(B(0,r)∩Y ′)
GY (r)

= 0, completing the proof of (A) in

Lemma 6.1. �
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Proof of (B) in Lemma 6.1. As in the proof of (A), without loss of gen-
erality we assume that v = (0, 1). Since Y is uniformly separated, there
exists a δ > 0 such that ‖y1 − y2‖ ≥ δ, for all distinct y1, y2 ∈ Y .

We assume that ε < δ < 1. Fix r > 1. Define the integers N1, N2,
the intervals Si, Ij, the numbers d1, d2 and the sets Yi,j(r) (for 1 ≤ i ≤
N1, 1 ≤ j ≤ N2) as in the proof of (A) (see (6.2)). We claim that for
distinct y1, y2 ∈ Yi,j(r) we have

|π1(y1)− π1(y2)| > δ/2. (6.8)

Indeed,

(π1(y1)− π1(y2))2 + (π2(y1)− π2(y2))2 = ‖y2 − y1‖2 > δ2

and, since ε < δ and |π2(y1)− π2(y2)| < ε/2 (see (6.5)), we get

(π1(y1)− π1(y2))2 > δ2 − ε2/4 > δ2 − δ2/4 > δ2/4,

and (6.8) follows. Denote by Y ′M the set of z ∈ Y such that for every
w ∈ Y \{z} and every k ≥M the inequality

‖(z − w)− kv‖ ≥ ε (6.9)

holds. Let N = d2M/δ e. We claim that

#(Yi,j(r) ∩ Y ′M) ≤ N, for all 1 ≤ i ≤ N1, 1 ≤ j ≤ N2. (6.10)

That is, no set Yi,j(r) ∩ Y ′M contains more than N elements.

Assume to the contrary that, for some choice of i, j, we have N + 1
distinct elements y1, y2, . . . , yN+1 lying in the same set Yi,j(r)∩Y ′M . We
may assume that these N +1 elements are arranged in such a way that
π1(yp+1)− π1(yp) > δ/2, for all p = 1, 2, . . . , N (see (6.8)). Then

π1(yN+1)− π1(y1) > N · δ/2 ≥M.

In view of (6.3), we obtain ‖(yN+1 − y1)− kv‖ < ε where

k = bπ1(yN+1)c − bπ1(y1)c ≥ bπ1(yN+1)− π1(y1)c ≥M.

This contradicts the assumption that yN+1 ∈ Y ′M , proving (6.10).

Since B(0, r) ∩ Y ′M =
⋃
i,j

(Yi,j(r) ∩ Y ′M), we conclude that

#(B(0, r) ∩ Y ′M) ≤ N ·#((i, j)) = NN1N2 = d2M/δe · d4r/εe · d2/εe ,

and hence lim sup
r→∞

#(B(0,r)∩Y ′M )

r
≤ d2M/δe·d4r/εe·d2/εe. Since lim

r→∞
r

GY (r)
=

0, we derive lim
r→∞

#(B(0,r)∩Y ′M )

GY (r)
= 0, completing the proof of (B) in

Lemma 6.1. �

We completed the proofs of both parts of Lemma 6.1. Part (B) of
this lemma, with M = 1, is used in the proof of Theorem 1.7.
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Proof of Theorem 1.7. The proof is by induction. Assume the as-
sertion for every tree with less than m+ 1 vertices, and let Γ be a tree
with m + 1 vertices V = {x0, . . . , xm}, embedded in the plane. Let

Γ′
def
= Γ\{x0} (the graph obtained from Γ by removing x0 and all its

adjacent edges). Let c be the number of connected components of Γ′,
then Γ′ is a disjoint union of c trees Γ1, . . . ,Γc, each with less than
m + 1 vertices. Denote by xij ∈ Γj the unique neighbor of x0 in Γj,
then for every j ∈ {1, . . . , c}, by the induction hypothesis, for almost
every y ∈ Y , (Γj, xij) can be ε-realized from y in Y .

Let Yj ⊆ Y be the set of points y ∈ Y for which (Γj, xij) cannot be

ε-realized from y. Then Y ′
def
= Y\(Y1∪. . .∪Yc) still satisfies lim

r→∞
r

GY ′ (r)
=

0, and, for every y ∈ Y ′ and every j ∈ {1, . . . , c}, the planar tree
(Γj, xij) can be ε-realized from y in Y . For each j consider the edge
{x0, xij} of Γ. By Lemma 6.1 (part B), for almost every y ∈ Y ′ there
exists a positive integer kij and a point zij ∈ Y ′ such that∥∥(y − zij)− kij(x0 − xij)

∥∥ < ε.

Hence for almost every y ∈ Y ′ there exist positive integers ki1 . . . , kic
and points zi1 , . . . , zic ∈ Y ′ such that for every j ∈ {1, . . . , c} we have∥∥(y − zij)− kij(x0 − xij)

∥∥ < ε,

and the assertion follows. �
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